
International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.46, June 2018

35

Performance Engineering in Cloud

Muhammed Suhail T. S.

ITA Tata Consultancy Services
Infopark Kakkanad

Kochi

ABSTRACT

For any user centric application, performance is a critical

factor. This paper deals with mobile/web application where

backend is configured in either cloud / classic servers and how

every component interacts and affects the overall system

performance. Every component designed in the architecture of

a system has its own importance. However, excessive use of

any resource will have impact on the complete system.

Performance Engineering is the study of these critical aspects

and helps in fine-tuning the application under test. This paper

will give a deeper insight on the infra level components as

well as real time problems which are encountered in real life

scenarios.

Keywords

AUT – Application Under test, API – Application

Programming Interface, DB – Database, SOA – Service

Oriented Architecture, AWS – Amazon Web Services, DBMS

– Data Base Management System, ODBMS – Object

Database Management System, IaaS – Infrastructure as a

Service, PaaS – Platform as a Service, SaaS – Software as a

Service, CDN – Content Delivery Network

1. INTRODUCTION
Mobile apps & web apps dominate the global online market

nowadays. The potential of the same, if effectively utilized

would be unprecedented. The industry growth in the sector is

huge and the total number of active mobile apps in the app

store by 2020 would be close to 5 million, in play store by

2020 would be around 6 million and mobile web slated for a

huge number. The total revenue generated by these

mobile/web apps are in billions. As per recent studies, it was

found that if the response time of an app or website is more

than 3 seconds the number of users using that app decreases

dramatically. As the response time increases the number of

users engaging with the app or site reduces exponentially. The

bounce rate of such sites are around 60%. This indicates the

importance of the performance of a web/mobile app.

Majority of the apps in our day-to-day life operates by

consuming data, i.e, they work leveraging Internet. APIs are

the basic method by which data transfers occurs in

applications. Performance of any app has a direct relationship

with the APIs they consume. The purpose of application

programming interfaces is that it makes it easier for

developers to use certain technologies in building

applications. By abstracting the underlying implementation

and only exposing objects or actions the developer needs, an

API simplifies programming. APIs helps to get data, write

data, update data, and delete data in a database. In addition, it

performs calculations and logic to provide business

functionalities to the end user. In performance engineering,

the goal would be to enhance the operational response of

APIs, which in turn would result in enhanced system

performance.

For building a service-oriented architecture in an application

there are mainly two possible ways. Either the traditional

server based architecture or by using cloud based services.

There are many advantages of using cloud over server

architecture, the most important being the cloud vendor

handling infra level aspects completely. It offers very high

availability and security as compared to traditional server

systems. Scalability is another factor that favors cloud over

traditional approach. Some of the major cloud vendors are

AWS, Microsoft Azure, Google cloud platform, Adobe, IBM

Cloud etc. The cloud service providers offers a whole range of

services in addition to hosting, including API services, DB

services, Cache services, Message Queues etc.

The server-based deployment is also still widely used as not

all applications are hosted on cloud. In server-based

architecture, we always have a specific limit to the traffic that

could be handled by the server. Also scaling up is

comparatively difficult as compared with cloud. Infra level

bottlenecks are higher in this architecture. The cost would

always remain constant whether the vendor consumes the

required amount of resources or not. Availability is another

trade off with this system. However, applications having low

amount or constant amount of traffic can be configured with

the server-based systems effectively as the operational costs

of cloud are comparatively higher in this case. Some of the

famous hosting providers of servers are inmotion hosting,

liquid web, single hop, codero, bluehost etc.

2. ARCHITECTURAL COMPONENT OF

SYSTEMS
All dynamic applications web and mobile leverage application

programming interfaces for their functioning. Only static /

standalone apps works with resources already packaged in the

executable. Any app having connectivity and data transfer

follows the below given architecture.

Figure 1. Basic dynamic application architecture.

In the figure, we can see that the front-end viz. Mobile/Web

interfaces passes on requests to the API gateway. The API

gateway on receiving a particular request validates the

authenticity of the incoming request and after confirming

validity passes it on to the backend. The backend system

receives this request and processes it based on the business

logic and returns the corresponding response back to the app.

During the execution of business logic, all required infra level

components are utilized in order to provide the appropriate

response.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.46, June 2018

36

Performance is a factor that depends deeply on the backend

part of the system under consideration. Although

optimizations could be made in front-end the impact that it

can create is minimal as compared to backend enhancements.

Hence taking a deeper look onto the components that are

acting in the backend is required before proceeding further.

The below figure represents the basic back end components

that an API interacts with.

Figure 2. API Infra components.

Database
Database is an integral part of an application. All data related

aspects are stored and retrieved via databases. A DBMS

software is required for administration of databases. In order

to define, create, update, and delete entries in a DB, DBMS

systems are used. An example of DBMS software is the

famous SQL. There are different database classifications

based on the way in which they operate, rather than their data

classification structure. They are:

1. Navigational Databases

2. Relational Databases

3. Object Databases

4. No SQL Databases

In the Navigational Model, it relies on the "manual"

navigation of a linked data set, which is formed into a large

network. Data retrieval occurs by use of a primary key,

navigating relationships from one record to another or by

scanning all the records in a sequential order.

Relational Databases are one of the widely used database

model in the market now. It solved the complexities of the

navigational model and introduced the ease of use with the

table, row and column structures. It had a much-defined

model. However, the performance of the DB degrades when

huge amount of data is in store for processing. This led to the

creation of the next model, i.e. The NoSQL databases.

NoSQL databases are often very fast, do not require fixed

table schemas, avoid join operations by storing denormalized

data, and are designed to scale horizontally. The most popular

NoSQL systems include MongoDB, Couchbase, Riak,

Memcached, Redis, CouchDB, Hazelcast, Apache Cassandra,

and HBase.

Object Databases are a form of database in which information

is represented in the form of objects. It is different from the

table model of relational databases. The ODBMS comes

coupled with the programming language and is more

programmer friendly. It avoids the clear distinction between

the data and the application layer.

Now, from the performance aspect, database is a very crucial

component in the API performance. Every operation that

includes the accessing of DB to write data during the API

invocation would require higher amount of execution time as

DB write operations are slow. Although, doing a single

operation might not produce considerable impact, having

simultaneous multiple operations would indeed result in

lowering performance.

Next is the queries with joins, when large number of joins are

used when retrieving data, then the time required for

processing the query increases. There are certain steps to be

used while writing joins. Some of them are:

1. Ensure to use EXPLAIN.

2. Every “leg” of join should use an index. Ideally, it

should be joining on the primary key.

3. Find the appropriate storage engine to use, which

maximizes the performance.

Simple read operations would never take higher response time

as data would be retrieved faster. Also, ensure that the hosted

systems have enough CPU and memory to handle the

incoming requests.

Gateway/Endpoint
The gateway is the initial access point for an API request. All

Authorization & Authentication occurs at the gateway level. It

validates whether a request needs to be transferred for further

processing or whether it is a malicious request. Security

policies also are validated via the gateway. A gateway can

provide functionalities like collecting analytics data and

providing caching. A gateway often includes a transformation

engine to orchestrate and modify the requests and responses

on the fly. The responses are transferred back to the requestor

via the gateway.

From the performance standpoint of an API, the gateway has

an important role. Since the initial authentication,

authorization and security/throttling validations are done at

this level, it could become a possible performance bottleneck.

This also would be visible when the system under test is

loaded to its capacity full capacity or beyond that. As this is

also a component in the infra level architecture of the API

system a latency would be induced which could cause a

performance glitch when system is on load.

Firewall/Security Checkpoint
Firewalls are the basic security mechanism to prevent the

system from being compromised. There are ways to configure

firewalls to check for different types of threats viz. Denial of

Service attacks, Distributed Denial of service attacks,

ransomware etc. In configuring these threat detection and

avoidance calculations at the firewall level can result in a

performance glitch. Suppose in a direct access situation the

request takes 100 mille seconds to execute and on adding the

security validations the response got increased by 10 mille

seconds. Here the impact for a single request is negligible.

However once the number of requests received by the system

increases, i.e. if the number of simultaneous requests

increases at the firewall validation this results in a bottleneck

which could result in increase of response time of the system

by a maximum of 100% to 200%. So while configuring the

firewall rules ensure to avoid high complex threat analysis at

the infra level.

Load Balancers
Load balancers help to improve the distribution of workloads

across resources such as servers, clusters etc. This in turn

results in enhanced performance of the system and ensures

100% availability. It also reduces the chances of system

failures as distributing load across reduces over pressuring of

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.46, June 2018

37

a single server. There are different possible ways to configure

on how the distribution should occur. Simple algorithms

include random choice, round robin, or least connections.

Advanced algorithms operate taking into consideration factors

like servers load, up time and down time, current response of

the server, active connections, geo location etc. Nevertheless,

the load balancers are another component that is added to the

overall network architecture. Hence performance factor has

dependency on this component as well.

A possible problem that might occur with load-balanced

system is routing of a single user’s requests to different

servers. This will affect the system performance. One possible

way to solve is either by using shared database resources or

by using in memory database. Another option is to route

switch servers based on session identity. I.e. For a single

session, all requests should be routed to one server and for

another session, it should be routed to the next server.

However, both these approaches require some validation

check in the load balancer, which in turn results in inducing a

latency to the incoming request and its response.

Cache
Cache is a hardware or software component, which stores data

to be used for future computations. The data stored in cache is

the result of an earlier calculation or the duplicate of a data

stored elsewhere. Two common terms associated with cache

is cache hit & cache miss. If a particular data is found in the

cache then it is called a cache hit. Cache miss occurs when the

requested data is not found in the cache and have to be fetched

from the lower memory hierarchy. Cache hits are extremely

faster than other memory compute operations. This results in

improved performance when cache hits are more.

Cache is a component in the architecture, which if used

effectively can considerably enhance the performance of

systems. The only limitation is that caches are not as big other

memory units. There is tradeoff between speed and size. An

L2 cache is generally close to 100 times faster than the RAM.

As a huge gap exists between the processing speed

development and the memory development, the cache

approach has a significant traction. Similarly, in API

architecture as well instead of always relying on the DB to get

the required data, the frequently accessed data could be stored

in a cache and accessed accordingly. Although this increases

the complexity in the system, it helps to save valuable time

and enhances user experience.

Fig 3. Memory processor gap.

However, it is never advised to put all your data into the cache

and adopt a cache only design as the cache is very much

expensive to use compared to the ordinary storage devices. By

effectively leveraging the cache the overall system

performance can be enhanced.

Business Functionality viz. Code
Business functionality is the most important part of the

application. It is responsible for the end to end functioning of

the application and where complex operations involving data

exists. Performance of the code is of most importance. Before

jumping into any code level optimization first part of

performance engineering is to tune the infra level aspects.

Once infra is optimized to the maximum, and even then, if the

performance is lagging then a closer look into the code is

required.

The business code optimization can happen at different levels.

They are.

1. Design Level

2. Algorithms & Data structures

3. Source code level

4. Build Level

5. Compile Level

6. Assembly level

7. Run time

The Design level optimization occurs at the highest level. This

is considered during the design phase of the system. Based on

the high-level architecture design the system is developed and

deployed. So any changes in this level needs to be considered

initially as a rework on the design requirements and will have

considerable impact on the cost and timeline of the project if

implemented at a later stage. The optimization at the higher

hierarchies, like design, would yield the highest performance

enhancements. As the levels decreases the percentage increase

in performance decreases considerably. There exists an

inverse relationship between higher-level optimization and

performance enhancement percentage. Once high

performance enhancements are made with the higher

hierarchies, the next level increase in performance becomes

increasingly difficult.

3. CLOUD VS SERVER

ARCHITECTURE
Application backend was earlier hosted on secured standalone

servers. However, due to the cost of setting up these systems

and maintaining the same was considerably higher, distributed

hosting services aka cloud services gained traction. Both have

their advantages and tradeoffs.

Fig 4. Cloud vs Dedicated.

Considering the appropriate system based on the requirement

is an enterprise call, which should be made. The features of

cloud and standalone server architecture is explained below.

Cloud
Cloud servers are created using virtualization software that

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.46, June 2018

38

divides physical servers to multiple virtual servers. Some of

its features are.

1. High performance.

2. Easy to scale.

3. Built in redundancy.

4. Hardware configurable.

5. Future proofed.

There are certain tradeoffs for the cloud server.

1. Physically not isolated.

2. For high usage costs are high.

Dedicated Servers
Often known as a bare metal server, a dedicated server is a

single physical server that is not shared or used by anyone

else. Its features are.

1. High performance.

2. Hardware configurable.

3. Physically isolated.

4. Setup costs are constant.

Some disadvantages of dedicated systems are.

1. Low scalability or scaling requires high effort cost

and down time.

2. No built in redundancy.

3. It is not future proofed.

4. PERFORMANCE ENGINEERING

WITH AWS
Amazon Web Services (AWS) is a subsidiary of Amazon that

provides on demand cloud computing resources to the

consumers. It includes IaaS, PaaS and SaaS services. The

consumer is billed based on the amount of resources

consumed. It is a pay as you use platform. As of 2017, AWS

accounts for 34% of the whole IaaS and PaaS services offered

over cloud, which is higher than that of the next 3 competitors

combined viz. Microsoft Azure, Google Cloud and IBM.

Hence, the focus of performance engineering on AWS does

have a significant traction.

A closer view of how an API works with AWS will provide a

way to understand the architecture of the system and methods

to improve the performance aspects of the same. The

following figure represents how a basic API request performs

with the AWS cloud backend.

Fig 5. AWS API basic architecture with security

components.

In the above figure, the API call originates from the user end

and first hits the cloud front in the AWS architecture. Cloud

Front is a global Content Delivery Network (CDN) provided

by AWS. It accelerates delivery of websites, APIs, video

content, or other web assets. It can be integrated with other

AWS products to provide businesses an easy way to

accelerate content to end users with no minimum usage

commitments. It uses a global network of edge locations to

deliver website, including dynamic, static, streaming and

interactive content. Requests for the content are automatically

routed to the nearest edge location. Amazon CloudFront is

optimized to work with other services in AWS and it also

works seamlessly with 3rd party servers not associated with

Amazon.

In the performance space, the Cloud Front service helps to

improve the overall system performance by routing the

incoming request to the nearby edge location whereby the

overall content delivery is made faster.

WAF is the Web Application Firewall provided by AWS. It is

a web application firewall service that helps protect the

websites and web apps that you deliver with Amazon

CloudFront and ELB Application Load Balancers. It also

helps to control access to the content. Custom rules can be

added to mitigate all threats happening to the system. Basic

security offers protection against cross site scripting, DDoS

attack, SQL injection etc. It can be used to block IP addresses,

filter based on the headers, identify and block requests

originating from a particular geo location and also based on

string and regex occurring in the headers of the request.

However, WAF is a component that requires certain amount

of calculation to be executed. This in turn adds latency to the

incoming request as the complexity of the custom rule goes

beyond a specific level, the flooding of incoming request can

have adverse effects on the response time. Configuring WAF

optimally is an important step in AWS performance

engineering.

The Amazon API Gateway acts as a front door for all

incoming API calls. It can handle hundreds of thousands of

concurrent API calls simultaneously providing authorization

and authentication, traffic management, monitoring and API

version control. The gateway is responsible for routing the

incoming requests to the appropriate functions, which contain

the business logic to be executed. Since API gateway is a

single point of handling immense number of incoming

requests, it can become a choke point as the application

scales. So while doing performance analysis on components

in AWS, API gateway configuration has a critical role.

Next is Lambda. Lambda is where the entire code execution

takes place. All business logic is written inside the lambda

service using java, python, node, C #, or Go. Lambda is a

compute service of AWS. Once the function is created in

lambda, it takes care of provisioning and managing the servers

to run the code upon invocation. Ease of use is the most

important feature of the lambda service. All code level

optimization needs to be handled at this component. This

would be the last place to search for performance

improvement once all other infra level components have been

fine-tuned. Lambda functions are easy to monitor using the

cloud watch metrics. It can provide the number of

invocations, error count, invocation duration, concurrent

execution etc.

Amazon RDS is the relational data base service provided by

AWS. It is easy to setup, operate and scale as the DB is in

cloud. It provides cost-efficient and resizable capacity while

managing time-consuming database administration tasks.

There are six familiar DB engines to choose in Amazon RDS

viz. Amazon Aurora, PostgreSQL, MySQL, MariaDB, Oracle

and Microsoft SQL Server. Some of the advantages of the

Amazon RDS are.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.46, June 2018

39

1. Fast and easy to administer.

2. Highly Scalable.

3. Available and Durable.

4. Secure.

5. Inexpensive.

Database operations are always time-consuming tasks. Hence,

there is a huge impact for the same in the defining the

performance of the application. Some APIs perform DB write

operations and some DB read. DB write would always have

higher response times as compared to DB reads. However, if

complex business operations were involved in a service call of

DB read, this would again result in increased response time.

So simplifying the business logic to be performed with ease

would be part of the re-engineering process involved in the

project/API development. The basic requirement is to bring

the API responses around the usual business standards. A

recent study indicated that the likeliness of users using an

application that have a response time > 3 seconds is less than

10%. Hence bringing the API response under 500 mille

seconds is a critical aspect to the success of a web/mobile

application. Operations like sign up would always be a time

consuming operation if performed with hundreds of submits

simultaneously as it would always be a DB intensive task. By

reducing the direct DB calls, it is possible to an extent to

enhance the performance of the APIs. Also by using

appropriate cache designs, faster response time could be

achieved.

Amazon ElastiCache is a service, which helps to easily deploy

in memory cache in cloud. Unlike the normal disk based DB,

the in memory cache is extremely faster. This in turn helps in

improving web application performance as information

retrieval occurs from fast, managed, in-memory cache. There

are mainly two types cache supported by ElastiCache. They

are.

1. Redis

2. Memcached

Redis is a fast, open source, in-memory data store and cache.

ElastiCache is fully managed, scalable and secure. Hence, it is

best suited to power high performance mobile, web, game

app, ad-tech & IoT.

ElastiCache is a protocol compliant with Memcached so that

the existing systems using memcache can work with

elasticache memcache seamlessly.

Appropriate cache design is a brilliant method to enhance the

system/API performance. However, the cost of cache is very

higher as compared to the ordinary disk storage. Hence,

putting all data in cache to increase performance is never a

sustainable approach. Striking the appropriate balance

between DB disk operation and cache execution can result in

efficient performance results.

5. BASIC PERFORMANCE

BOTTLENECKS CHECKS
Until now, a view of how basic cloud backend & server

backends work with respect to APIs is detailed. However,

there are many basic steps to be followed while doing

performance bottleneck analysis.

After working with few projects for their performance

bottleneck identification and enhancements, there are some

checklists/guidelines, which could be applied across any

performance enhancement projects. They include.

 Initial analysis should be done with low transaction

limits on the system to understand the basic

performance.

 Test post and get requests separately with load to

understand the response time for DB intensive and

business logic calculations.

 Analyze and monitor DB usage when performing

testing and capture the CPU, Memory and I/O

graphs.

 Monitor the hosted backend system performance

metrics viz. CPU and Memory consumption during

test.

 Monitor the gateway to understand the number

concurrent requests being received at the backend

and any errors.

 Monitor the cache metrics, especially cache hits and

cache misses to understand how many requests are

routed to the DB for calculation and what the

current cache efficiency is.

 Monitor the network speed when performing tests

as slowness in network speed can result in increased

response times.

 Tools like New Relic could be used to monitor the

code/query calls being made, that consumes the

most time for execution. Analyze whether any

optimization could be done on long intensive

queries/operations.

 Another basic thing which could be missed is the

log writing processes done in the code side. For

example, during development there would code

snippets in the source code for writing the logs

which could result in huge performance lags when

on load. Always ensure to reduce the amount of

logging before pushing code to performance.

In AWS cloud, ensure to test with and without WAF rules

enabled. Example, if too many WAF rules are added, it can

result in latency at the WAF on flooding of requests.

Once all these checks are done, an analysis of the system

could be made which would contain details on the identified

infra level and basic code level issues. After rectifying the

same re-test to understand what is the performance

enhancement achieved. If the desired result is achieved, then

we can increase the loads to test the system and see the

response graphs. If all basic checks have been done and still

there is performance lag in the system then serious code level

analysis needs to be done to improve the performance.

6. CONCLUSION
Performance engineering is a niche field with lot of

opportunities. Especially as currently in the mobile/web

applications space, people always want speed rather than too

much functionality. There are many examples where despite

being a brilliant product, due to the low ease of use and

response the application got phased out of the market. The

market success of WhatsApp is the story of a brilliant simple

and super-fast messaging app, which outgrew all its

competitors with in much time and now is the industry leader

in the messaging space. Even before the introduction of

WhatsApp, there were plenty of messaging application.

International Journal of Computer Applications (0975 – 8887)

Volume 180 – No.46, June 2018

40

However, this new one had an edge over the rest. Thanks to

the performance of the app at scale that the users loved it.

Further analysis in code level could be done which indeed is a

matter for another paper. Considering the importance of

performance engineering, especially with cloud back ends,

there is a long way to go.

7. ACKNOWLEDGEMENTS
Thanks to all the people who had given me opportunities to

work with different projects and helped to understand AWS

cloud as well as performance engineering concepts in deep.

Thanks to the team who had developed the format of this

paper.

8. REFERENCES
[1] Murray Woodside, Greg Franks, Dorina C. Petriu The

Future of Software Performance Engineering, Carleton

University, Ottawa, Canada.{cmw | greg |

petriu}@sce.carleton.ca.

[2] Robert S. Hanmer John P. Letourneau, A best practice

for performance engineering.

[3] Erwin Laure, Heinz Stockinger and Kurt Stockinger,

Performance Engineering in Data Grids, CERN,

European Organization for Nuclear Research, Geneva,

Switzerland.

[4] Performance Engineering and Testing The Challenges

on Mobile Platforms Pavlo Bazilinskyy University of St

Andrews School of Computer Science pb52@st-

andrews.ac.uk, Markus Brunner University of St

Andrews School of Computer Science mb246@st-

andrews.ac.uk

[5] Cloud Based Performance Testing, FungayiDonewell

Mukoko, , Abhaya2, Kaushal Kumar 3, Ankush Jain4 .

[6] A Brief Survey on Web Application Performance Testing

Tools Literature Review Isha Arora M.Tech Scholar,

Department of Computer Science and Engineering ,

PIET, PANIPAT, INDIA Vikram Bali Department of

Computer Science and Engineering, PIET, PANIPAT,

INDIA.

[7] Performance Test Workload Modeling by agileload.com

[8] Performance Testing of Software Systems, Filippos I.

Vokolos AT&T Labs - Applied Tech. filip@att.com

Elaine J. Weyuker AT&T Labs - Research

weyuker@research.att.com

[9] Performance Testing: A Comparative Study and Analysis

of Web Service Testing Tools, Shikha Dhiman Pratibha

Sharma Research Scholar Asstt Professor Department of

Computer Science Department of Computer Science

Career Point University Hamirpur, India Career Point

University Hamirpur, India.

[10] A Survey on Performance Testing Approaches of Web

Application and Importance of WAN Simulation in

Performance Testing, Dr. Ramakanth Kumar P. Head of

Department, Department of ISE, RVCE Bangalore,

INDIA Email-id: ramakanthkp@rvce.edu.in Kalpan

Bhargav M.Tech(SE),4 th semester , Department of ISE,

RVCE Bangalore, INDIA E-mail-id:

kalpan.bhargav@gmail.com

[11] Wikipedia, the free encyclopedia,

https://en.wikipedia.org/

[12] https://www.clook.net/

[13] https://d1.awsstatic.com/whitepapers/aws-overview.pdf

[14] https://aws.amazon.com/lambda/?p=tile

https://en.wikipedia.org/wiki/Software_as_a_service

[15] https://en.wikipedia.org/wiki/Amazon_Web_Services

IJCATM : www.ijcaonline.org

